| USN                                                                                   | CBCS SCREME CENTRAL LIBRARY                                                                                                                                                                                                                                                                                                                                                 | V53                        |  |  |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|
|                                                                                       | Fifth Semester B.E. Degree Examination, July/August 2022                                                                                                                                                                                                                                                                                                                    |                            |  |  |
|                                                                                       | Applied Geotechnical Engineering                                                                                                                                                                                                                                                                                                                                            |                            |  |  |
| Tin                                                                                   | : 3 hrs. Max. Marks: 10                                                                                                                                                                                                                                                                                                                                                     | 00                         |  |  |
|                                                                                       | Note: Answer any FIVE full questions, choosing ONE full question from each module.                                                                                                                                                                                                                                                                                          |                            |  |  |
| 1 Interactice.                                                                        | <u>Module-1</u><br>. List the various boring methods. Describe with a neat sketch, the wash boring technique exploration of soil. (10 Ma                                                                                                                                                                                                                                    |                            |  |  |
| be treated as                                                                         | . By conducting a Seismic refraction study, the following readings were obtained.<br>Time (sec) 0.1 0.2 0.3 0.4 0.45 0.50 0.55<br>Distance (M) 40 80 120 160 200 240 280<br>Geophones are placed at a spacing of 40m in a straight line and time takes for the last w                                                                                                       | VANA                       |  |  |
| .+8 = 20, WIII                                                                        | to be received at each geophone is given. What are the velocities of wave in soil lay<br>What is the thickness of the top stratum? (10 Ma                                                                                                                                                                                                                                   | ers?                       |  |  |
| <sup>7</sup> 2                                                                        | OR<br>Discuss the objectives of dewatering. List the different methods of dewatering and exp<br>any one of them with a neat sketch. (12 Ma                                                                                                                                                                                                                                  |                            |  |  |
| ra / 0 requations written eg. $42 + 8 = 30$ , will be treated as maipractice <b>5</b> | . Estimate the position of ground water table from the following data :<br>Depth upto which water is bailed out is 32m. Water rise in the first day : 2 . 4m,<br>Second day : 2.0m and third day : 1.6m. (08 Ma)                                                                                                                                                            | rks)                       |  |  |
|                                                                                       | . Derive the equation for vertical stress at a depth 'Z' below the point load 'Q' Boussinesq's analysis. (06 Ma                                                                                                                                                                                                                                                             | rks)                       |  |  |
| al to evalu                                                                           | <ul> <li>A circular area 6m in diameter carries a uniformly distributed load of 10kN/m<sup>2</sup>. Plot variation of vertical stress at depths 2m, 4m and 8m. (08 Ma</li> <li>Explain Contact Pressure distribution in soils. (06 Ma)</li> </ul>                                                                                                                           | rks)                       |  |  |
| ı, appe                                                                               | OR                                                                                                                                                                                                                                                                                                                                                                          |                            |  |  |
| <ol> <li>Any revealing of identification, appeal to evaluator a</li> <li>4</li> </ol> | . Write a note on Settlement of Footings. (08 Ma<br>. Estimate the immediate settlement of a footing of size 2m × 3m resting at a depth of 1.5m<br>sandy soil whose compression index is 10000 kN/m <sup>2</sup> . Footing is expected to transmit a<br>pressure of 200kN/m <sup>2</sup> . Poisson's ratio of soil is 0.3 and influence factor for footing is 1.0<br>(04 Ma | m in<br>unit<br>6.<br>rks) |  |  |
| 2. Any revea                                                                          | A saturated clay 8m thick underlies a proposed new building. The existing overbund<br>pressure at the centre of the clay layer is $300$ kN/m <sup>2</sup> and load due to new building increase<br>the pressure by 200 kN/m <sup>2</sup> . The liquid limit of soil is 75%, natural water content is 50%<br>$G_S = 2.7$ . Estimate Consolidation Settlement. (08 Ma         | ases<br>and                |  |  |
| 5                                                                                     | Module-3         . List the assumptions made in Rankine's earth pressure theory and explain Active E pressure and Passive Earth pressure.         (08 Ma)                                                                                                                                                                                                                   | rks)                       |  |  |
|                                                                                       | For a retaining wall, 8m height supports a sandy backfill with $e = 0.6$ , $G = 2.65$ and $\phi =$<br>Water table is at a depth of 2m from ground surface. Draw Active earth pressure diag<br>and find magnitude and point of application of total active earth pressure. Assume soil ab<br>water table has a degree of saturation of 50%. (12 Ma<br>1 of 2                 | ram<br>ove                 |  |  |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                             |                            |  |  |

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.



State and explain different types of slopes and list the assumptions made in slope stability analysis. (08 Marks)

- Explain Fellinious method of obtaining centre of critical slip surface in the case of stability b. analysis of C -  $\phi$  soil. (06 Marks)
- c. A 5m deep canal has side slopes of 1 : 1, the properties of soil are  $C = 20 \text{kN/m}^2$ ,  $\phi = 10^{\circ}$ , e = 0.8 and G = 2.8. If Taylor's stability number is 0.108, determine the factor of safety with respect to cohesion when canal runs full. (06 Marks)

## Module-4

- 7 Define i) Ultimate bearing capacity ii) Net ultimate bearing capacity a. iii) Safe bearing capacity iv) Allowable bearing pressure.
  - b. A  $2m \times 2m$  footing is located at a depth of 1.5m from ground surface in sand. The shear parameters are C = 0 and  $\phi = 36^{\circ}$ . Determine the ultimate bearing capacity of soil if Water table is at the base of footing. i)
    - ii)
    - Water table well below the foundation level. iii) Water table at the ground surface.

Take  $N_c = 50.5$ ,  $N_q = 37.7$ ,  $N_r = 48$ .

Unit weight of soil above water table = 18kN/m<sup>3</sup> and saturated soil is 20kN/m<sup>3</sup>.

(12 Marks)

(08 Marks)

## OR

- Explain Plate Load test for determining the ultimate bearing capacity of soil with a neat 8 a. sketch. (08 Marks)
  - b. A square footing located at a depth of 1.3m below the ground surface has to carry a load of 800kN. Find the required size of footing for the following data :  $C = 8kN/m^2$ ,  $\phi = 30^\circ$ , e = 0.55, degree of saturation = 50%, G = 2.67,  $N_c = 37.2$ ,  $N_q = 22.5$ ,  $N_r = 19.7$ . Factor of safety is 3. Assume water table is at the base of footing.

(12 Marks)

## Module-5

- Classify the Pile foundations according to function. 9 a. (05 Marks) What is meant by efficiency of pile groups? Discuss Feld's rule for its determination. b.
  - (06 Marks) c. A 12m long, 30mm diameter pile is driven in uniform deposit of sand with  $\phi = 40^{\circ}$ . The water table is at great depth. The average dry unit weight of sand is 18kN/m<sup>3</sup>. Using  $N_q = 137$ , calculate the safe load capacity of single pile with a factor of safety of 2.5 and angle of wall friction =  $30^\circ$ , K = 2. (09 Marks)

## OR

- Explain Pile Load test, with a neat sketch. 10 a. (10 Marks) b. Write short notes on :
  - i) Negative skin friction Under reamed pile foundation. ii) (10 Marks)